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Shielding Effect of a Diaphragm
in a Packaged Microstrip Circuit

Hao-Hui Chen and Shyh-Jong Chung, Member, IEEE

Abstract—The scattering of a diaphragm in a packaged mi-
crostrip line is investigated using the mode-matching method
together with the method of lines. Instead of analyzing the
discontinuity in the microstrip, this paper tackles the variation of
‘the waveguide housing. The influences of the thickness and the
depth of the diaphragm on the scatterings of the dominant mode
and higher-order modes are analyzed based on a comparison of
the modal power distributions. Finally, the shielding effect of a
pair of closely spaced diaphragms is investigated.

1. INTRODUCTION

N a (monolithic) microwave circuit, active devices or pas-

sive components radiate energy due to the discontinuities
of the signal transmission lines. For an open-type circuit,
the radiated power is carried by the surface waves and/or
radiation waves of the substrate. For a packaged one, these
waves change into the higher-order modes of the shielded
transmission line. As these parasitic higher-order modes travel
toward another device, the power is coupled into the trans-
mission line through the second device, and the normal signal
on the line is disturbed. Suitable methods should be adopted
to guard devices from the electromagnetic interference (EMI)
caused by these spurious modes. One of the approaches is to
partition the packaged circuit into several cabinets using the
metal diaphragms (Fig. 1).

The design of the metal diaphragms depends on how the
modal fields are distributed over the cross section of the
waveguide. For a shielded microstrip line, the higher-order
modes have higher field density over the air region than has
the dominant mode (microstrip mode). The dominant mode,
which carries signals, has most of its field concentrated in the
substrate region beneath the microstrip and part of the field
distributed above the microstrip due to the fringing effect.

Essentially, the larger the depth of the diaphragm is, the
greater is the power of the incident higher-order modes which
can be reflected back, and thus the better is the isolation which
can be achieved. But, as the depth is increased so that the
diaphragm reaches the near zone of the microstrip, the field of
the dominant mode is perturbed, causing a disruption of the
signal. This implies that the depth of the diaphragm should be
appropriately designed to get the maximum shielding effect,
while not disturbing the signal.
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Fig. 1. A diaphragm in a shielded microstrip line.

The analysis of the scattering of a diaphragm in a shielded
microstrip line is somewhat similar to that of an iris in a rect-
angular or cylindrical waveguides. For the scattering analysis
of the iris, the mode-matching method has been used by many
researchers to handle the discontinuity problems [1]-[4]. In
their analyses, the structures of the waveguides were uniform,
and the eigenmodes were easily found. The same method
has also been adopted to tackle the step-type discontinuities
in the shielded microstrip or other planar transmission lines
[5]-[13]. Since the structures of the treated waveguides were
complicated, numerical methods such as the spectral domain
approach [5]-[9], the equivalent waveguide model [10], [11],
and other approaches [12], [13], were used to obtain the
field distributions of the eigenmodes. These eigenmodes may
include complex modes [14], [15], which need a root searching
in the complex plane. In general, only a small number of
eigenmodes were required to expand the fields at the step due
to the invariability of the waveguide housing.

In this paper the mode-matching method is used to analyze
the shielding effect of a diaphragm inserted in a closed
microstrip waveguide. The eigenmodes of each waveguide
region are calculated by the method of lines (Mol.) [16]. Since
the housings of the waveguides are different in each region,
more eigenmodes are needed in the mode-matching procedure.
The depth and the thickness of the diaphragm are varied to
see the influences on the shielding effects with respect to the
dominant and higher-order modes. Also, the shielding effects
of a pair of closely spaced diaphragms are investigated.

II. ANALYSIS

Fig. 2 shows the structure for analysis, where a diaphragm
with depth d and thickness ¢ is attached to the top cover of
a packaged microstrip waveguide. The microstrip is located
symmetrically in the z direction and has a width (w) equal
to the thickness (h) of the substrate. The dimension of the
housing is set to be 10h x 10h. Let the propagation modes of
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Fig. 2. Structure for amalysis. &, = 9.7, h = w = 0.635 mm.

the packaged microstrip waveguide be incident from the left
of the diaphragm. These modes may be excited by some active
device or passive component and may represent the signal (the
dominant mode) or the parasitic wave (higher-order modes).

To tackle the problem, the modes, including propagation,
evanescent, and complex, of the microstrip waveguides with
the housings 10A X 10 and 10 A x (10h — d) are first solved
by the method of lines. Following the procedure described in
[16], a homogeneous matrix equation is obtained

1Z(7) B]

where J, and J, are two vectors representing the z and z
components of the current distributed on the strip, and -y is the
propagation constant of the mode, which may be imaginary
(propagation modes), real (evanescent modes), or complex
(complex modes).

To get nontrivial solutions of the current distributions, the
determinant of the impedance matrix [Z(-y)] should be zero,
from which the propagation constants are obtained. In this
analysis the «’s for the propagation modes are found by
the Muller’s method, while those for evanescent modes are
obtained by searching in the negative real axis of the v plane
for the sign changes of the determinant of [Z(«y)]. The required
~’s (excluding the poles of the determinant) are first set as
initial guesses, and the Muller’s method is used to get more
exact solutions. To find the +’s for the complex modes, the
evanescent modes at a frequency several GHz apart from the
operating frequency are first obtained. The frequency is then
changed toward the operating one. At each sampled frequency,
the propagation constants are searched for by the Muller’s
method with the propagation constants obtained at the previous
sampled frequency as the initial guesses.

With ~ known, the current distributions on the strip are de-
termined from (1), and all the fields of each mode are explicitly
calculable. In this paper, a fine equal-distance discretization is
used in the calculation to handle the large field variations of the
highest-order modes. The fields of each mode are normalized
so that its power equals 1 for a propagation mode, equals £¢
(i = 4/(—1)) for an evanescent mode, and its absolute value
equals unity for a complex mode.

After the eigen modes for each housing are found, the mode-
matching method [2], [8], [10] is then adopted to determine
the scattering matrix of the diaphragm. First, the computed
modal fields are used to expand the fields at the two sides of
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the junction formed by the waveguides I and II (see Fig. 2).
The continuities of the tangential electric and magnetic fields
lead to two sets of equations, which are then suitably weighted
by the modal fields [2], [10]. After this, a relation between the
incident waves (A1, B™) and the scattered waves (A~, BT)

is obtained
A~ At
(RS

where A and B are vectors formed by the modal amplitudes
of waveguides I and II, respectively. The superscripts “+”
correspond to £z propagations.

Once the scattering matrix Sjunc Of a single junction is de-
termined, that of the diaphragms can be obiained by cascading
the scattering matrices of all the junctions.

2

III. NUMERICAL RESULTS

In this paper we set h = w = 0.635 mm, ¢, = 9.7, and
the operating frequency f = 25 GHz. Under this choice of
the parameters, there- are three propagation modes for the
microstrip waveguide with housing 107 x 10A, in which the
first two (dominant mode and 2nd-order mode) are even modes
and the last one (3rd-order mode) is an odd mode. In the
method-of-lines calculation of the modal fields, the number of
the e-lines passing through the microstrip is 20, which has been
shown to be sufficient for the present analysis. The validity
of the obtained modes, especially for higher-order evanescent
modes and complex modes, should be checked. This is done
by satisfying the waveguide characteristic equation and all
the boundary conditions. Also, the calculated modes satisfy
the orthogonality relationships and the pair of complex modes
satisfy the strong coupling and the orthogonality relationships
referred to in {14]. Finally, the conservation and the conver-
gence of the complex power, i.e., the average power and the
reactive power, at the planes of z = 0 and z = ¢ have been
checked to further insure the validity of the works about the
mode-matching method.

Since the design of the diaphragms depends on what are the
field distributions of the waveguide modes, we compare the
distributions of the z-propagated powers (F.’s) for the three
propagation modes of the 10 h X 10k waveguide. From the
three-dimensional views of the power distributions, it has been
found that the powers diverge at the strip edges and decay as
the observation point leaves the edges. Moreover, the dominant
mode has more power concentrated in the substrate region than
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Fig. 3. z-propagated power disttibutions along the y direction at * = w/2

for the dominant and higher-order modes of the shielded microstrip line.
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Fig. 4. Variation of the scattered powers as a function of the normalized
diaphragm depth (d/h) for a dominant-mode-incidence. ¢ = 2.1 mm, f =
25 GHz.

do the 2nd-order mode and 3rd-order mode. Fig. 3 compares
the power distributions along the y direction at x = w/2 for
the three modes. Note that y/h = 1 is the interface between
the substrate and air regions. It is found that for the dominant
mode, the power decays to almost zero at about y/h = 1.4,
but for the higher-order modes, a large part of the power is
distributed in the air region. For the 2nd-order mode, although
the power decays, there is still a notable value even at y/h =
10 (the top cover of the waveguide). For the 3rd-order mode,
the power distribution does not decay monotonically but has
a considerable value near y = 5h. This suggests that one may
use a diaphragm with guitable depth to reflect the powers of
the higher-order modes and not disturb the dominant mode’s
power.

The shielding effect of the diaphragms with different depths
can be observed in Figs. 4-6. Fig. 4 presents the variations of
the scattered powers as a function of the diaphragm depth
for the dominant-mode incidence, and Figs. 5 and 6 present
those for the 2nd-order-mode and 3rd-order-mode incidents,
respectively. Here P,; (FP,;) represents the transmitted (re-
flected) power of the 7th mode. From Fig. 4 it is seen that
increasing the depth of the diaphragm does not influence the
propagation of the dominant mode. Even when the diaphragm
is only 0.1/ above the microstrip (d = 8.9h), the transmission
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Fig. 5. Variation of the scattered powers as a function of the normalized
diaphragm depth (d/h) for a 2nd-order-mode incidence. ¢ = 2.1 mm, f =
25 GHz.
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Fig. 6. Variation of the scattered powers as a function of the normalized
diaphragm depth (d/h) for a 3rd-order-mode incidence. ¢ = 2.1 mm, f =
25 GHz.

loss (1/P;) is still less than 0.1 dB. Nevertheless, the reflected
power (P,.1) increases rapidly as the diaphragm is approaching
the microstrip. In the limiting case in which the diaphragm
touches the microstrip, a dc return path is formed and there
may be more power being reflected back.

The scattering for the higher-order-mode incidents is quite
different from that for the dominant-mode incidence. Large
variations of the transmission ( Pis, F;3) and reflection (P,
P,3) powers due to the change of the diaphragm depth can
be observed from Figs. 5 and 6. For the 2nd-order-mode
incidence, Fig. 5 shows that the depths (d) for 3-, 10- , and
20-dB transmission losses (1/Po) are 6h, 8h, and 8.8h, re-
spectively. The difference between the incident and transmitted
powers is carried by the reflected 2nd-order mode. The power
coupled to the dominant mode (P.; and P ) is negligible
except when the diaphragm is very close to the microstrip.
(For example, as d = 8.9h, both the transmitted and reflected
dominant modes get one percent of the incident power.) Note
that the two dashed lines ( P2, P.2) in Fig. 4 are identical
with those ( Py, P.1) in Fig. 5, which is the consequence
of the reciprocity theorem. For the 3rd-order-mode incidence,
the shielding effect is more obvious. From Fig. 6 it is seen
that the depth (d) for 3-, 10-, and 20-dB transmission losses
(1/P;3) are 2h, 3.2h, and 4.4h, respectively. This substantial
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Fig. 7. Variation of the scattered powers as a function of the diaphragm
thickness (¢) for a 2nd-order-mode incidence. d = 7h, f = 25 GHz.

scattering occurs because most of the power of the 3rd-order
mode is concentrated near half of the waveguide height, and
that the 3rd-order mode of waveguide II (the region beneath
the diaphragm) becomes evanescent when d > 1.18%. In this
case (d > 1.18h), the incident power coming from waveguide I
is coupled to waveguide IIT (Fig. 2) entirely by the evanescent
fields in waveguide IL. It is noticed that, since the 3rd-order
mode is an odd mode but the dominant and 2nd-order modes
are even, the incident power carried by the 3rd-order mode
is not coupled to the dominant and 2nd-order modes. (In our
numerical calculations the coupling powers between the odd
and even modes are less than —100 dB.) Similarly, for the
dominant-mode and the 2nd-order-mode incidents, there is no
power transferred to the 3rd-order mode (as can be noticed in
Figs. 4 and 5).

To find the influence of the diaphragm thickness on the
shielding effect of the higher-order modes, Figs. 7 and 8 show
the transmission (P, P:3) and reflection (Pra, P,3) powers
for, respectively, an incident 2nd-order mode and a 3rd-order
mode. The depth (d) of the diaphragm is set to be 7h. In
Fig. 7, the dashed lines represent the results calculated using
54 expansion modes in waveguides I and III and 16 modes in
waveguide II, both including only propagation and evanescent
modes. The solid lines are the results with an extra pair of
complex modes in each waveguide. The periodical behaviors
of the curves come from the bouncing of the 2nd-order mode in
waveguide 11 between the two junctions of the region beneath
the diaphragm. The period (7.6 mm) is approximately equal
to the half-wavelength (7.73 mm) of the 2nd-order mode of
waveguide I It is seen that at thicknesses ¢ = 2.1 mm and 9.7
mm, one has the minimum transmission power (P2 = —5.5
dB). But, as the thickness is chosen to be 6 mm, nearly all the
incident power transmits through the diaphragm, which means
that the diaphragm has no shielding effect on the incident
wave. It is also noticed that the inclusion of the complex modes
has influence on the calculated scattered powers only when
the diaphragm is very thin (¢ < 0.4 mm). This means that in
practice (¢ > 0.5 mm) the complex modes can be ignored. The
complication of the analysis can thus be greatly reduced.

From Fig. 8 it is seen that, no matter what the thickness is,
the power is almost entirely reflected back for a 3rd-order-
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Fig. 8. Variation of the scattered powers as a function of the diaphragm
thickness (¢) for a 3rd-order-mode incidence. d = 7h, f = 25 GHz.
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Fig. 9. Variation of the transmitted powers for a pair of diaphragms, as a
function of the distance (/) between the diaphragms. The incident wave is the
2nd-order of shielded microstrip line. d = 7h, f = 25 GHz.

mode incidence, as a result of the deep diaphragm (d =
7h). Nevertheless, the transmission power ( F.3) decreases
monotonically with the increase of the diaphragm thickness.
It is noticed that, since the 3rd-order mode and the other
odd modes in waveguide II are evanescent when d = 7h,
no oscillations of the curves are observed.

Fig. 9 shows the transmitted power for a 2nd-order-mode
incident upon two diaphragms (both with depth d = 7h), as
a function of the distance between the diaphragms. The intro-
duction of the space between the diaphragms first increases
the transmitted power to almost O dB, then decreases it to
a minimum value which is about 10 dB less than that of a
single diaphragm with the same depth (d = 7h) (see Fig. 7).
The thicker are the diaphragms, the smaller are the minima. It
is also seen that the resonant lengths for the diaphragms with
thicknesses £ = 0.50, 1.05, and 2.10 mm are the same ([ =
11.8 mm), and are approximately equal to the half-wavelength
(11.03 mm) of the 2nd-order mode.

TV. CONCLUSION

The shiclding effect of a diaphragm in a housed microstrip
waveguide has been analyzed using the mode-matching
method together with the method of lines. In the mode-
matching procedure, ignoring the complex modes of the
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shielded lines causes numerical errors only when the
diaphragm is very thin (<0.4 mm). It has been shown that the
thickness of the diaphragm should be carefully designed to
obtain the optimum shielding effect. Also, by increasing the
depth, the diaphragm can reflect almost all the power of the
incident higher-order modes while it has little influence on
the propagation of the dominant mode. Finally, the shielding
effect of a pair of diaphragms has been found to be about
10 dB better than that of a single one, with the diaphragms
being suitably spaced.
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