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Shielding Effect of a Diaphragm

in a Packaged Microstrip Circuit
Hao-Hui Chen and Shyh-Jong Chung, Member, IEEE

Abstract-The scattering of a diaphragm in a packaged mi-

crostrip line is investigated using the mode-matching method

together with the method of lines. Instead of analyzing the
discontinuity in the microstrip, this paper tackles the variation of
the waveguide housing. The influences of the thickness and the
depth of the diaphragm on the scattering of the dominant mode
and higher-order modes are analyzed based on a comparison of
the modal power distributions. Finally, the shielding effect of a

pair of closely spaced diaphragms is investigated.

\

Fig, 1. A diaphragm in a shielded microstrip line.

I. INTRODUCTION

I N a (monolithic) microwave circuit, active devices or pas-

sive components radiate energy due to the discontinuities

of the signal transmission lines. For an open-type circuit,

the radiated power is carried by the surface waves andlor

radiation waves of the substrate. For a packaged one, these

waves change into the higher-order modes of the shielded

transmission line. As these parasitic higher-order modes travel

toward another device, the power is coupled into the trans-

mission line through the second device, and the normal signal

on the line is disturbed. Suitable methods should be adopted

to guard devices from the electromagnetic interference (EMI)

caused by these spurious modes. One of the approaches is to

partition the packaged circuit into several cabinets using the

metal diaphragms (Fig. 1).

The design of the metal diaphragms depends on how the

modal fields are distributed over the cross section of the

waveguide. For a shielded microstrip line, the higher-order

modes have higher field density over the air region than has

the dominant mode (microstrip mode). The dominant mode,

which carries signals, has most of its field concentrated in the

substrate region beneath the microstrip and part of the field

distributed above the microstrip due to the fringing effect.

Essentially, the larger the depth of the diaphragm is, the

greater is the power of the incident higher-order modes which

can be reflected back, and thus the better is the isolation which

can be achieved. But, as the depth is increased so that the

diaphragm reaches the near zone of the microstrip, the field of

the dominant mode is perturbed, causing a disruption of the

signal. This implies that the depth of the diaphragm should be

appropriately designed to get the maximum shielding effect,

while not disturbing the signal.
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The analysis of the scattering of a diaphragm in a shielded

microstrip line is somewhat similar to that of an iris in a rect-

angular or cylindrical waveguides. For the scattering analysis

of the iris, the mode-matching method has been used by many

researchers to handle the discontinuity problems [1 ]–[4]. In

their analyses, the structures of the waveguides were uniform,

and the eigenmodes were easily found. The same method

has also been adopted to tackle the step-type discontinuities

in the shielded microstrip or other planar transmission lines

[5]–[13]. Since the structures of the treated waveguides were

complicated, numerical methods such as the spectral domain

approach [5]–[9], the equivalent waveguide model [10], [1 1],

and other approaches [12], [13], were used to obtain the

field distributions of the eigenmodes. These eigenmodes may

include complex modes [14], [15], which need a root searching

in the complex plane. In general, only a small number of

eigenmodes were required to expand the fields at the step due

to the invariability of the waveguide housing.

In this paper the mode-matching method is used to analyze

the shielding effect of a diaphragm inserted in a closed

microstrip waveguide. The eigenmodes of each waveguide

region are calculated by the method of lines (MoL) [16]. Since

the housings of the waveguides are different in each region,

more eigenmodes are needed in the mode-matching procedure.

The depth and the thickness of the diaphragm are varied to

see the influences on the shielding effects with respect to the

dominant and higher-order modes. Also, the shielding effects

of a pair of closely spaced diaphragms are investigated.

II. ANALYSIS

Fig. 2 shows the structure for analysis, where a diaphragm

with depth d and thickness t is attached to the top cover of

a packaged microstrip waveguide. The microstrip is located

symmetrically in the z direction and has a width (w) equal

to the thickness (h) of the substrate. The dimension of the

housing is set to be 10h x 10L Let the propagation modes of
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Fig. 2. Structure for anafysis. 6, = 9.7, h = w = ().635 mm,

the packaged microstrip waveguide be incident from the left

of the diaphragm. These modes may be excited by some active

device or passive component and may represent the signal (the

dominant mode) or the parasitic wave (higher-order modes).

To tackle the problem, the modes, including propagation,

evanescent, and complex, of the microstrip waveguides with

the housings 10h x 10h and 10 h x (lOh – d) are first solved

by the method of lines. Following the procedure described in

[16], a homogeneous matrix equation is obtained

J.
[z(T)][J ] = o,

z strip

(1)

where Jz and J= are two vectors representing the x and z

components of the current distributed on the strip, and ~ is the

propagation constant of the mode, which may be imaginary

(propagation modes), real (evanescent modes), or complex

(complex modes).

To get nontrivial solutions of the current distributions, the

determinant of the impedance matrix [Z(?)] should be zero,

from which the propagation constants are obtained. In this

analysis the -y’s for the propagation modes are found by

the Muller’s method, while those for evanescent modes are

obtained by searching in the negative real axis of the -y plane

for the sign changes of the determinant of [Z(7)]. The required

-y’s (excluding the poles of the’ determinant) are first set as

initial guesses, and the Muller’s method is used to get more

exact solutions. To find the -y’s for the complex modes, the

evanescent modes at a frequency several GHz apart from the

operating frequency are first obtained, The frequency is then

changed toward the operating one. At each sampled frequency,

the propagation constants are searched for by the Muller’s

method with the propagation constants obtained at the previous

sampled frequency as the initial guesses.

With ~ known, the current distributions on the strip are de-

termined from (l), and all the fields of each mode are explicitly

calculable. In this paper, a fine equal-distance discretization is

used in the calculation to handle the large field variations of the

highest-order modes. The fields of each mode are normalized

so that its power equals 1 for a propagation mode, equals &i

(i = ~) for an evanescent mode, and its absolute value

equals unity for a complex mode.

After the eigen modes for each housing are found, the mode-

matching method [2], [8], [10] is then adopted to determine

the scattering matrix of the diaphragm. First, the computed

modal fields are used to expand the fields at the two sides of

the junction formed by the waveguides I and II (see Fig. 2).

The continuities of the tangential electric and magnetic fields

lead to two sets of equations, which are tlhen suitably weighted

by the modal fields [2], [10]. After this, a relation between the

incident waves (A+, B – ) and the scattered waves (A–, B+)

is obtained

(2)

where A and B are vectors formed by the modal amplitudes

of waveguides I and II, respectively. The superscripts “+”

correspond to +Z propagations.

Once the scattering matrix SjUnC of a single junction is de-

termined, that of the diaphragms can be obtained by cascading

the scattering matrices of all the juncticms.

III. NUMERICAL RESULTS

In this paper we set h = w = 0,635 mm, G. = 9.7, and

the operating frequency f = 25 GHz. Under this choice of

the parameters, there are three propagation modes for the

microsttip waveguide with housing 10h x 10h, in which the

first two (dominant mode and 2nd-order mode) are even modes

and the last one (3rd-order mode) is an odd mode. In the

method-of-lines calculation of the modal. fields, the number of

the e-lines passing through the microstripl is 20, which has been

shown to be sufficient for the present analysis. The validity

of the obtained modes, especially for higher-order evanescent

modes and complex modes, should be checked. This is done

by satisfying the waveguide characteristic equation and all

the boundary conditions. Also, the calculated modes satisfy

the orthogonality relationships and the pair of complex modes

satisfy the strong coupling and the orthc)gonality relationships

referred to in [14]. Finally, the conservation and the conver-

gence of the complex power, i.e., the average power and the

reactive power, at the planes of z = O and z = t have been

checked to further insure the validity of the works about the

mode-matching method.

Since the design of the diaphragms depends on what are the

field distributions of the waveguide modes, we compare the

distributions of the z-propagated powers (P,’s) for the three

propagation modes of the 10 h x 10h waveguide. From the

three-dimensional views of the power distributions, it has been

found that the powers diverge at the strip edges and decay as

the observation point leaves the edges. Moreover, the dominant

mode has more power concentrated in the substrate region than
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Fig. 3. z-propagated power distributions along the y direction at z = w12

for the dominant and higher-order modes of the shielded microstrip line.
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Fig. 4. Variation of the scattered powers as a function of the normalized
diaphragm depth (d/h) for a dominant-mode-incidence. t = 2.1 mm, ~ =
25 GHz.

do the 2nd-order mode and 3rd-order mode. Fig. 3 compares

the power distributions along the y direction at x = w12 for

the three modes. Note that y/h = 1 is the interface between

the substrate and air regions. It is found that for the dominant

mode, the power decays to almost zero at about y/h = 1.4,

but for the higher-order modes, a large part of the power is

distributed in the air region. For the 2nd-order mode, although

the power decays, there is still a notable value even at y/h =

10 (the top cover of the waveguide). For the 3rd-order mode,

the power distribution does not decay monotonically but has

a considerable value near y = 5h. This suggests that one may

use a diaphragm with suitable depth to reflect the powers of

the higher-order modes and not disturb the dominant mode’s

power.

The shielding effect of the diaphragms with different depths

can be observed in Figs. 4–6. Fig. 4 presents the variations of

the scattered powers as a function of the diaphragm depth

for the dominant-mode incidence, and Figs. 5 and 6 present

those for the 2nd-order-mode and 3rd-order-mode incidents,

respectively. Here Pti (Pri) represents the transmitted (re-

flected) power of the ith mode. From Fig. 4 it is seen that

increasing the depth of the diaphragm does not influence the

propagation of the dominant mode. Even when the diaphragm

is only 0.1 h above the microstrip (d = 8.9h), the transmission

Pt2

1’
‘1.

NORMALIZED OEPTH d I h

Fig. 5. Variation of the scattered powers as a function of the normalized
diaphragm depth (d/h) for a 2nd-order-mode incidence. t = 2.1 mm, ,f =

25 GHz
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Fig. 6. Variation of the scattered powers as a function of the normalized
diaphragm depth (d/h) for a 3rd-order-mode incidence. t= 2.1 mm, .f =

25 GHz.

loss (l/Ptl) is still less than 0.1 dB. Nevertheless, the reflected

power (Prl) increases rapidly as the diaphragm is approaching

the microstrip. In the limiting case in which the diaphragm

touches the microstrip, a dc return path is formed and there

may be more power being reflected back.

The scattering for the higher-order-mode incidents is quite

different from that for the dominant-mode incidence. Large

variations of the transmission ( Pt2, Pt3) and reflection (Pr2,

P,3) powers due to the change of the diaphragm depth can

be observed from Figs. 5 and 6. For the 2nd-order-mode

incidence, Fig. 5 shows that the depths (d) for 3- , 10- , and

20-dB transmission losses ( l/~t2) are 6h, 8h, and 8.8h, re-

spectively. The difference between the incident and transmitted

powers is carried by the reflected 2nd-order mode. The power

coupled to the dominant mode (Prl and Ptl) is negligible

except when the diaphragm is very close to the microstrip.
(For example, as d = 8.9hj both the transmitted and reflected

dominant modes get one percent of the incident power.) Note

that the two dashed lines ( Ptz, P7.z) in Fig. 4 are identical

with those ( Ptl, P.l ) in Fig. 5, which is the consequence

of the reciprocity theorem. For the 3rd-order-mode incidence,

the shielding effect is more obvious. From Fig. 6 it is seen

that the depth (d) for 3-, 10-, and 20-dB transmission losses

(1/P,3) are 2h, 3.2h, and 4.4h, respectively. This substantial
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Fig. 7. Variation of the scattered powers as a function of the diaphragm
tilckness (t) for a 2nd-order-mode incidence. d = 7h, f = 25 GHz.

scattering occurs because most of the power of the 3rd-order

mode is concentrated near half of the waveguide height, and

that the 3rd-order mode of waveguide II (the region beneath

the diaphragm) becomes evanescent when d > 1.18h. In this

case (d >1. 18h), the incident power coming from waveguide I

is coupled to waveguide III (Fig. 2) entirely by the evanescent

fields in waveguide II. It is noticed that, since the 3rd-order

mode is an odd mode but the dominant and 2nd-order modes

are even, the incident power carried by the 3rd-order mode

is not coupled to the dominant and 2nd-order modes. (In our

numerical calculations the coupling powers between the odd

and even modes are less than – 100 dB.) Similarly, for the

dominant-mode and the 2nd-order-mode incidents, there is no

power transferred to the 3rd-order mode (as can be noticed in

Figs. 4 and 5).

To find the influence of the diaphragm thickness on the

shielding effect of the higher-order modes, Figs. 7 and 8 show

the transmission (Pt2, Pt3) and reflection (Prz, P.3) powers

for, respectively, an incident 2nd-order mode and a 3rd-order

mode. The depth (d) of the diaphragm is set to be 7h. In

Fig. 7, the dashed lines represent the results calculated using

54 expansion modes in waveguides I and III and 16 modes in

waveguide II, both including only propagation and evanescent

modes. The solid lines are the results with an extra pair of

complex modes in each waveguide. The periodical behaviors

of the curves come from the bouncing of the 2nd-order mode in

waveguide II between the two junctions of the region beneath

the diaphragm. The period (7.6 mm) is approximately equal

to the half-wavelength (7.73 mm) of the 2nd-order mode of

waveguide II. It is seen that at thicknesses t= 2.1 mm and 9.7

mm, one has the minimum transmission power (Pt2 = –5.5

dB). But, as the thickness is chosen to be 6 mm, nearly all the

incident power transmits through the diaphragm, which means

that the diaphragm has no shielding effect on the incident

wave. It is also noticed that the inclusion of the complex modes

has influence on the calculated scattered powers only when

the diaphragm is very thin (t <0.4 mm). This means that in

practice (t >0.5 mm) the complex modes can be ignored. The

complication of the analysis can thus be greatly reduced.

From Fig. 8 it is seen that, no matter what the thickness is,

the power is almost entirely reflected back for a 3rd-order-

THICKNESS t (mm)
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Fig. 8. Variation of the scattered powers as a function of the diaphragm
thickness (t) for a 3rd-order-mode incidence. d = 7h, f = 25 GHz.
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Fig. 9. Variation of the transmitted powers for a pair of diaphragms, as a

function of the distance (1) between the diaphragms. The incident wave is the
2nd-order of shielded microstrip line. d = 7h, f = 25 GHz.

mode incidence, as a result of the deep diaphragm (d =

7h). Nevertheless, the transmission power ( Pt3) decreases

monotonically with the increase of the diaphragm thickness.

It is noticed that, since the 3rd-order mode and the other

odd modes in waveguide II are evanescent when d = 7h,
no oscillations of the curves are observed.

Fig. 9 shows the transmitted power for a 2nd-order-mode

incident upon two diaphragms (both with depth d = 7h), as

a function of the distance between the cliaphragms. The intro-

duction of the space between the diaphragms first increases

the transmitted power to almost O dB, then decreases it to

a minimum value which is about 10 dB less than that of a

single diaphragm with the same depth (d = 7h) (see Fig. 7).

The thicker are the diaphragms, the smaller are the minima. It

is also seen that the resonant lengths for the diaphragms with

thicknesses t = 0.50, 1.05, and 2.10 mm are the same (1 =

11.8 mm), and are approximately equal to the half-wavelength

(11.03 mm) of the 2nd-order mode.

IV. CONCLUSION

The shielding effect of a diaphragm in a housed microstrip

waveguide has been analyzed using the mode-matching

method together with the method of lines. In the mode-

matching procedure, ignoring the complex modes of the
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shielded lines causes numerical errors only when the

diaphragm is very thin (<0.4 mm). It has been shown that the

thickness of the diaphragm should be carefully designed to

obtain the optimum shielding effect. Also, by increasing the

depth, the diaphragm can reflect almost all the power of the

incident higher-order modes while it has little influence on

the propagation of the dominant mode. Finally, the shielding

effect of a pair of diaphragms has been found to be about

10 dB better than that of a single one, with the diaphragms

being suitably spaced.
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